If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-42x+11=0
a = 10; b = -42; c = +11;
Δ = b2-4ac
Δ = -422-4·10·11
Δ = 1324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1324}=\sqrt{4*331}=\sqrt{4}*\sqrt{331}=2\sqrt{331}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-2\sqrt{331}}{2*10}=\frac{42-2\sqrt{331}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+2\sqrt{331}}{2*10}=\frac{42+2\sqrt{331}}{20} $
| x=4(3)-1 | | 7^(3x+1)=98 | | 4p-p-p-p-2p= | | x=4(1)-1 | | x=4(0)-1 | | x=4(-1)-1 | | 0.10x+0.15(50–x)=0.12(50)= | | x=-5(1)+4 | | 1/4=2^x | | x=-5(0)+4 | | x=-5(-3)+4 | | y/4-8=-10 | | 10x+5=8x+60 | | x=0-5 | | 1x+4=8x+5 | | x=-5-5 | | 2,5x+5=19-2x | | 4-(3x-9)=10 | | x=5(3)+1 | | x=5(0)+1 | | x=5(-1)+1 | | 2-8y=-6 | | m+(–10)=–33 | | 2–8y=-6 | | 5x-17-(8x+3)=14 | | x=-1(5)-2 | | 0=6-1.5x | | x=-1(1)-2 | | x=-1(0)-2 | | x=-1(-1)-2 | | x=-1(-2)-2 | | 6x-32=4x/9 |